GEOL680: Geodynamics
Tuesday/Thursday, 11:00 AM –12:15 PM, TBD

Syllabus

Table of Contents
Course Information .. 2
 Meeting times and locations ... 2
 Lectures ... 2
 Labs ... 2
 Credit ... 2
Instructor ... 2
Website ... 2
Text ... 2
Course Requisites ... 3
Technology .. 3
Method for Communication with Students Outside the Classroom 3
Emergency Protocol ... 4
CORE/GED .. 4
Course Description, Goals, and Expectation ... 4
 General Description .. 4
 Learning Outcomes .. 4
 Course Sequence (subject to change) ... 4
 Expectation of students .. 5
Grading Procedures ... 5
 General instructions .. 5
 Homeworks (60 pts) ... 6
 Geodynamics Virtual Conference (20 pts) ... 6
 Final exam (20 pts) ... 6
 Grade calculation .. 6
Appeal of grades .. 7
Course Procedures and Policies ... 7
 Attendance .. 7
 Religious Observances ... 7
 Inclement Weather ... 8
 Absences due to illness ... 8
 Academic integrity ... 8
 Electronic devices .. 9
 Class evaluation .. 9
Special Needs ... 9
 Students with Disabilities... 9
Course Information

Meeting times and locations

Lectures:
Tuesdays and Thursdays, 11:00 AM – 12:15 PM, location SYM0209; Make-up classes may take place in CSS3256 (time TBD)

Labs
There are no labs associated with this class.

Credit
The course is offered for 3 Credits only.

Instructor

Dr. Laurent G. J. Montési
Associate Professor, Department of Geology
Office: CSS 3231
Tel: 5-7534
email: montesi@umd.edu
Office hours: TBD

Don’t hesitate to send me an email at the address above. It is the most reliable way to contact me. I am happy to contact you outside of office hours. Send me an email to setup an appointment.

Website
A website for the class is available through the University ELMS/blackboard system. Follow the link to https://elms.umd.edu/, enter your directory ID and password. If you are registered, you should be able to see GEOL680 in your list of classes and access the website that way (it may take 24h for ELMS to update).

The website will contain lecture notes as a PDF and, when appropriate, scanned book chapters or links to external websites. Lectures will be mostly conducted on a blackboard. Therefore, there complete transcripts of lectures will not be available on ELMS.

Text

Required:
Although not required, the following are good resources to complement the class. These are fairly general texts so you may be able to access equivalent books. These are the ones I personally use.

Material for discussion will be available as PDF on ELMS.

Course Requisites

Prerequisites
- Permission of CMNS-Geology department
- OR Must have completed MATH241, MATH462, and GEOL446

Recommended
- Familiarity with MATLAB or MATHEMATICA

Technology

Occasionally, homework may require access to Internet tools, computer calculation and simple programming. All the problems can be solved with Matlab. Computer labs with the required software are available from OIT:
- CSS Lab Hours (rooms 3330 & 3332):
 - Mon. through Thurs. open 8:00 am - 10:00 pm.
 - Fri. open 8:00 am - 5:00 pm
 - Closed on Sat. & Sun.

Method for Communication with Students Outside the Classroom

Email, send through the ELMS website will be the preferred means of communication with students outside the classroom. Please make sure that forwarding to any non-UMD email address is fully functional. Student are responsible for receiving the messages sent through ELMS.
Emergency Protocol
In the event of an emergency that closes the University for an extended period of time, lectures will be recorded by the instructor and posted on ELMS.

CORE/GED
This class does not fulfill CORE or GED requirement.

Course Description, Goals, and Expectation

General Description
The mechanics and dynamics of the Earth's interior and their applications to problems of Geophysics. This course considers several rheological descriptions of Earth materials (brittle, elastic, linear and nonlinear fluids, and viscoelastic) and emphasizes analytical solutions to simplified problem.

Learning Outcomes:

- Students will gain an in-depth understanding of the mechanics of the lithosphere, deformation, stress, fluid mechanics as it applies to the Earth's interior, including thermal convection. (GEOL - Geophysics)
- Students will derive analytical solution to simplified problems that reveal the fundamental characteristics of more complex geodynamical models and provide a toolkit to interpret geological observations (PC-4 Knowledge of advanced mathematics, typically including differential equations, linear algebra, complex variables, and discrete mathematics)
- Students will understand the relation between physics concept, especially continuum mechanics and (laminar) fluid dynamics, and geological observations (Interdisciplinary understanding)

Course Sequence (subject to change; makeup dates to be announced)

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture topic</th>
<th>Homework Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/02/2014</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>09/04/2014</td>
<td>Continuum mechanics</td>
<td></td>
</tr>
<tr>
<td>09/09/2014</td>
<td>Stress</td>
<td></td>
</tr>
<tr>
<td>09/11/2014</td>
<td>Stress representations</td>
<td>1: Mathematical Refresher</td>
</tr>
<tr>
<td>09/16/2014</td>
<td>Strain</td>
<td></td>
</tr>
<tr>
<td>09/18/2014</td>
<td>Geodesy</td>
<td>2: Stress</td>
</tr>
<tr>
<td>09/23/2014</td>
<td>Elasticity</td>
<td></td>
</tr>
<tr>
<td>09/25/2014</td>
<td>Elastic moduli</td>
<td>3: Strain + dikes</td>
</tr>
<tr>
<td>09/30/2014</td>
<td>Tectonic symmetry</td>
<td></td>
</tr>
<tr>
<td>10/02/2014</td>
<td>Elastic Dislocations</td>
<td>4: Elasticity</td>
</tr>
<tr>
<td>10/07/2014</td>
<td>Elastic Flexure</td>
<td></td>
</tr>
<tr>
<td>10/09/2014</td>
<td>Plate flexure</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Chapters</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>10/14/2014</td>
<td>Plate buckling</td>
<td></td>
</tr>
<tr>
<td>10/16/2014</td>
<td>Examples of plate flexure</td>
<td>5: Plates</td>
</tr>
<tr>
<td>10/21/2014</td>
<td>Fluids</td>
<td></td>
</tr>
<tr>
<td>10/23/2014</td>
<td>Navier Stokes Equation</td>
<td></td>
</tr>
<tr>
<td>10/28/2014</td>
<td>Basic Flow Solutions</td>
<td></td>
</tr>
<tr>
<td>10/30/2014</td>
<td>Stream Function</td>
<td>6: Asthenospheric flow</td>
</tr>
<tr>
<td>11/04/2014</td>
<td>Corner Flow</td>
<td></td>
</tr>
<tr>
<td>11/06/2014</td>
<td>Rayleigh-Taylor</td>
<td>7: Isostatic rebound</td>
</tr>
<tr>
<td>11/11/2014</td>
<td>Heat Equation</td>
<td></td>
</tr>
<tr>
<td>11/13/2014</td>
<td>Steady temperature solutions</td>
<td></td>
</tr>
<tr>
<td>11/18/2014</td>
<td>Heat waves</td>
<td></td>
</tr>
<tr>
<td>11/20/2014</td>
<td>Plate cooling</td>
<td>8: Heat</td>
</tr>
<tr>
<td>11/25/2014</td>
<td>Stefan problem</td>
<td></td>
</tr>
<tr>
<td>11/27/2014</td>
<td>Thanksgiving</td>
<td></td>
</tr>
<tr>
<td>12/02/2014</td>
<td>Convective instability</td>
<td></td>
</tr>
<tr>
<td>12/04/2014</td>
<td>Plate tectonics</td>
<td>9: Thermal catastrophe</td>
</tr>
<tr>
<td>12/09/2014</td>
<td>Rock Rheology</td>
<td></td>
</tr>
<tr>
<td>12/11/2014</td>
<td>Basic nonlinear flows</td>
<td></td>
</tr>
<tr>
<td>12/16/2014</td>
<td>Nonlinear corner flow</td>
<td></td>
</tr>
</tbody>
</table>

Expectation of students

GEOL 680 is a graduate level course in geology. A strong understanding of geology will be essential to identify pertinent questions for discussion and to fulfill class expectations. For that reason, permission of the instructor is required for students not enrolled in a graduate program in Geology.

We will derive several mathematical relations and describe their usage in Earth sciences. Familiarity with calculus and differential equations is essential to follow the course material.

Students should never hesitate to contact the instructor with any question or request for clarification. Email is the preferred contact method. Posting on ELMS is equally acceptable, especially in a way that enables other students to listen in on the conversation. One-on-one meetings can be arranged, subject to instructor and student availability. Always request such a meeting by email.

Grading Procedures

General instructions

As there is no TA for the class, students need to talk to me (Dr. Montesi) when they encounter any problem. Please don’t be shy! I am here to help you, and I hope you will
come and seek help if you have any difficulty. I am not interested in correcting wrong or incomplete homework, so do come and ask me before it’s too late!

You are welcome to discuss with each other the problem set but you need to write the answers yourself.

Problem sets will be available through the ELMS website. You can choose whether to submit your answers online or on papers. Grades and corrected versions will be posted online hopefully by the next class.

Precision and neatness is important for all the work done in this class. Any graph is expected to be done on a computer, or, if by hand, the student is expected to use rulers and protractors, as necessary. Axes must always be labeled by a caption and units must be specified whenever possible. Text answers must be argued. Numerical answers must be accompanied by an explanation of how the result was achieved. Points will be removed for insufficient explanations and for imprecise drawings.

Homeworks (60 pts)
Problem sets will be assigned most weeks, due the following week. See the detailed schedule for the current plan.

There will be no make-up homework because of the high frequency of assignments. You will receive a 0 mark for any late homework. However, at least one homework grade (the lowest) will be dropped to accommodate unavoidable difficulties. Request for delays must be received at least by 3 pm on the day before the homework is due, and be accompanied with a justification.

Geodynamics Virtual Conference (20 pts)
Each student will read up on a topic related to the class and produce a poster. The posters will be available on ELMS during the final week of class. Each student will post questions and answers to all the other posters. Both the presenters and the questioners will be evaluated.

Final exam (20 pts)
A take-home exam will be assigned during the Standard Final Examination assigned by the University. It will consist of a series of related problems that cover several portions of the course. I will not respond to requests for help for the final (although I will correct typos or missing information if they are found)

Grade calculation
Letter grades will be assigned based on the following scale. Standard rounding will be used, with final scores rounded to the nearest integer percentage, such that a 69.4 would be a D+ and a 69.5 a C-.
Appeal of grades
You may appeal your grade on any exam prior to the posting of final course grades. In this as in all college courses, you should retain all graded items until proper grades have been recorded on your transcript.

Course Procedures and Policies.

Attendance
Attendance to the lectures is highly recommended, as provided by University Policy: “The University expects each student to take full responsibility for his or her academic work and academic progress. The student, to progress satisfactorily, must meet all of the requirements of each course for which he or she is registered. Students are expected to attend classes regularly, for consistent attendance offers the most effective opportunity open to all students to gain command of the concepts and materials of their courses of study.”

The full attendance policy is available at www.testudo.umd.edu/soc/atedasse.html. It provides several cases for which student absence is excused. Any request to be excused must be submitted in writing and with appropriate documentation.

Religious Observances
The University System of Maryland policy provides that students should not be penalized because of observances of their religious beliefs, students shall be given an opportunity, whenever feasible, to make up within a reasonable time any academic assignment that is missed due to individual participation in religious observances. It is the responsibility of the student to inform the instructor of any intended absences for religious observances in advance.

If a homework due date falls on a religious holiday, students following that holiday will be allowed to turn in the homework by the following class time.

Students will be responsible to study the material missed during the religious holiday, using class handouts and the textbook. As always, these students are encouraged to post questions and requests for clarification on ELMS.
Inclement Weather
If the University Maryland is closed due to inclement weather, or a delayed opening overlaps with class time, the instructor will record a lecture and post it on ELMS. Any assignment due that day will be postponed until the following class. However, the schedule of subsequent assignments will remain unchanged, with the consequence that later homework may be separated by less than a week.

Absences due to illness
For every medically necessary absence from class, a reasonable effort should be made to notify the instructor in advance of the class. When returning to class, students must bring a note identifying the date of and reason for the absence, and acknowledging that the information in the note is accurate.

If a student is absent more than 3 time(s), the instructor may require documentation signed by a health care professional.

If a student is absent on a day an assignment is due, the student will need to post the assignment on ELMS or deliver it to the professor’s mailbox in the Geology building by 3pm the same day. If a longer extension is needed, the student needs to contact the professor by email before 3pm, including a note identifying the date of and reason for the absence. Any request for extension that extends beyond the next scheduled class must be accompanied by documentation signed by a health care professional.

Academic integrity
The Student Honor Council observes that:
The University of Maryland, College Park has a nationally recognized Code of Academic Integrity, administered by the Student Honor Council. This Code sets standards for academic integrity at Maryland for all undergraduate and graduate students. As a student you are responsible for upholding these standards for this course. It is very important for you to be aware of the consequences of cheating, fabrication, facilitation, and plagiarism. For more information on the Code of Academic Integrity or the Student Honor Council, please visit http://www.shc.umd.edu.

To further exhibit your commitment to academic integrity, remember to sign the Honor Pledge on all examinations and assignments: “I pledge on my honor that I have not given or received any unauthorized assistance on this examination (assignment).”

You are expected to take the Student Honor Pledge http://www.studentconduct.umd.edu/aca/honorpledge.html

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination
Electronic devices

To avoid unnecessary distractions during lectures, use of cell phones, including texting, is allowed only in case of emergency. If you choose to use a computer to take notes, do so in a manner that does not distract other students. You may have to stop if, for example, people around you start to look at your screen instead of the lecture. Text messaging is forbidden at all time during the lectures.

Class evaluation

Every student for any class in which more than five students are registered is expected to complete a course evaluation using the CourseEvalUM system. This is YOUR chance to anonymously evaluate this class. Please use it!

CourseEvalUM will be open for students at the end of the semester to complete their evaluations. Students can for directly to the http://www.courseevalum.umd.edu website to complete their evaluations. You will be alerted via your official University account. Students who complete evaluations for all of their courses in the previous semester excluding summer), can access the posted results via Testudo’s CourseEvalUM Reporting link for any course on campus that has at least a 70% response rate.

If less than 5 students are registered for GEOL680, class evaluations will be conducted as an anonymous survey on ELMS.

If you have any issue with the class, I would appreciate you contact me so that we discuss and hopefully resolve it.

Special Needs

I will make every possible effort to accommodate your request for special accommodations, when justified. However, any requests must be submitted as soon as possible and no later than the end of the schedule adjustment period. Do not wait!

Students with Disabilities

If you have a documented disability, you should contact Disability Support Services at Susquehanna Hall (http://www.counseling.umd.edu/DSS/). Each semester, students with documented disabilities should apply to DSS for accommodation request forms, which you can provide to your professors as proof of your eligibility for accommodations. The rules for eligibility and the types of accommodations a student may request can be reviewed on the DSS web site. Please provide evidence of eligibility before the end of September.

Copyright: © 2014 Laurent G.J. Montési as to this syllabus and all lectures. Students are prohibited from copying and selling course materials, from selling lecture notes, and from being paid to take lecture notes without the express written permission of the faculty teaching this course.